If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-49+4x^2=0
a = 4; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·4·(-49)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*4}=\frac{-28}{8} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*4}=\frac{28}{8} =3+1/2 $
| (-7n)-20=-48 | | -8y+5(y+4)=35 | | 18-z=16 | | p(10)=2500(1.026)^10 | | (-6x)-11=49 | | 2^3x=2^2x-1 | | 5=11-d | | -8x+4+5=1 | | 5=11−d | | 5t-14=3t-2 | | p(10)=2000(1.019)^10 | | -8u+6(u+6)=32 | | -4x+9=-7x–12 | | -2(x-1)=3(3x+1) | | -8u+36=32 | | A=1/2(3/2x•x) | | 12s-37=8s-9 | | p(8)=3000(1.019)^8 | | (y+1)^2=2(y-4) | | n+83=7(2n-3) | | (y+1)2=2(y-4) | | p(9)=600(1.041)^9 | | 6b-42=3b | | p(4)=600(1.041)^4 | | 2^2-3x+1=0 | | -1k+15+1.5k=35 | | (2x^2-68x+11)/2x+3=1 | | v(10)=32.000(0.80)^10 | | 7(x-6=3x+9 | | 32=-(-5+n)-3(n-1) | | v(4)=32,000(0.80)^4 | | 2z(z-1)=5z2-7 |